
COST EFFICIENT
ALTERNATIVE TO

DATABRICKS

Georg Heiler

Exploring Alternatives for Cost-Effective and Flexible Data Pipelines →bit.ly/efficient-spark

https://bit.ly/efficient-spark

Data expert
Academia & Industry (telco)

Specialties
data architecture, multimodal and complex

data challenges

Thought leader
Meetup organizer & speaker

• Rising importance of understanding
and shaping supply chains (covid,
Ukraine war)

• No fine-grained clean data
accessible

• Abundant un- and semistructured
data → sophisticated cleaning &
parsing required

• Extract and classify links based on
semantic context

Results at a glance

History

• Mainframe

• Data warehouse

• Big Data (Hadoop)

• SQL on large data (Hive, Spark)

• Cloud DWH (Snowflake, bigquery)

PaaS offering

PaaS Solution Comparison

Databricks (DBR)

• Easy to use
• Can be expensive
• Lock-in features

(permissions, catalog)
• Proprietary Photon engine

AWS Elastic Map Reduce
(EMR)

• Price efficient
• Many tuning knobs

available (& required)
• OSS Spark managed

(scaled)

Challenges

• Runaway expenses (usage-based pricing)
• Missing software engineering best practices (notebooks)
• Developer productivity reduced
• Vendor lock-in

Vision

• 0-cost switch
• Software engineering

practices
• Cost & lock-in

reduction

Orchestrator
(dagster)

Runtime
local

Runtime
remote DBR

Runtime
remote EMR

Spark at a glance

Dagster introduction

X No distributed monolith of CRON strings
→ Asset aware event based orchestration

Observed challenges

• Remote execution
• Parameter injection
• Logging
• Opaque SaaS tools
• Single pane of glass
• Dependency bootstrap
• Missing testability in

notebooks
• Large-scale compute &

orchestrator native
development

Orchestrator
(dagster)

Runtime
local

Runtime
remote DBR

Runtime
remote EMR

Dagster-pipes

Dagster-pipes - Architecture

Dagster-pipes - Sample

External code (with metadata) Internal asset shim orchestrating the execution of
external script

Results & Demo

Demo: youtube.com/watch?v=W27C5LpdEkE

https://www.youtube.com/watch?v=W27C5LpdEkE

Partitioned UI

Implementation
time of DBR is

lower

Implementation
complexity of DBR

is lower
more & more

frequent commits
for EMR integration

Median cost
of DBR is

higher than
EMR

Variability of
execution

time of DBR
is lower

Implementation lessons

• Complexity of AWS EMR: Many low level details about AWS, spot
instances, networking required (master on spot instance =>

)
• Abstracting the PaaS requires deep understanding of their APIs
Tips
• maximizeResourceAllocation
• LZO
• Delta zorder on partition
• spark.databricks.delta.vacuum.parallelDelete.enabled=true

Summary

Takeaway – if
you have a
small data
problem

• Pipes allows to quickly bring in existing
scripts whilst retaining observability

• High code engineering practices scales
well

• Full control

• Compute technology can easily be
changed (i.e. duckdb, daft, …) data-
engineering.expert/2023/12/11/dagster-
dbt-duckdb-as-new-local-mds

https://data-engineering.expert/2023/12/11/dagster-dbt-duckdb-as-new-local-mds/
https://data-engineering.expert/2023/12/11/dagster-dbt-duckdb-as-new-local-mds/
https://data-engineering.expert/2023/12/11/dagster-dbt-duckdb-as-new-local-mds/

COST EFFICIENCY
FOR DATA

Georg Heiler

bit.ly/efficient-spark
 (data-engineering.expert/2024/06/21/cost-efficient-alternative-to-databricks-lock-in

arxiv.org/abs/2408.11635 github.com/ascii-supply-networks/ascii-hydra/tree/main/src/pipelines/ascii_library_demo)

https://bit.ly/efficient-spark
https://data-engineering.expert/2024/06/21/cost-efficient-alternative-to-databricks-lock-in/
https://arxiv.org/abs/2408.11635
https://github.com/ascii-supply-networks/ascii-hydra/tree/main/src/pipelines/ascii_library_demo

	Slide 1: Cost efficient Alternative to databricks
	Slide 2
	Slide 4
	Slide 5: Results at a glance
	Slide 6: History
	Slide 7: PaaS offering
	Slide 8: PaaS Solution Comparison
	Slide 9: Challenges
	Slide 10: Vision
	Slide 11: Spark at a glance
	Slide 12: Dagster introduction
	Slide 13: Observed challenges
	Slide 14: Dagster-pipes
	Slide 15: Dagster-pipes - Architecture
	Slide 16: Dagster-pipes - Sample
	Slide 17: Results & Demo
	Slide 18
	Slide 19: Partitioned UI
	Slide 20: Implementation time of DBR is lower
	Slide 21: Implementation complexity of DBR is lower more & more frequent commits for EMR integration
	Slide 22: Median cost of DBR is higher than EMR
	Slide 23: Variability of execution time of DBR is lower
	Slide 24: Implementation lessons
	Slide 25: Summary
	Slide 26: Takeaway – if you have a small data problem
	Slide 27: Cost Efficiency for data

